\qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
THIRD SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017
Course Code: EE201
Course Name: CIRCUITS AND NETWORKS (EE)

PART A

Answer all questions. Each question carries 5 marks.

1. Apply Superposition theorem to determine the current I in the circuit shown in figure (1).

Figure (1)

Figure (2)
2. For the graph shown in figure (2), select $\{4,5,6\}$ as tree and hence determine the fundamental cut-set matrix Q and tie-set matrix B . Also prove that Q and B are orthogonal.
3. In the circuit shown in figure (1), steady state exists when switch is in position 1 . At t $=0$, it is moved to position 2. Determine the expression for current $\mathrm{i}(\mathrm{t})$ through the inductance for $\mathrm{t} \geq 0$.

Figure (3)
4. The current through a 4 F capacitance is given by the following s-domain equation $I(s)=\frac{24(s+2)}{(s+1)(s+3)}$. Find voltage across the capacitance $\mathrm{v}(\mathrm{t})$.
5. Determine the h-parameters of the network shown in figure (4) and hence check whether the network is symmetrical.

Figure (4)

Figure (5)
6. If $[z]=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ for the two port network shown in figure (5), calculate the average power delivered to 1Ω resistor.
7. Test whether the polynomial $F(s)=s^{4}+3 s^{3}+4 s^{2}+3 s+1$ is Hurwitz.
8. Test whether the following represents LC driving point immittance function $F(s)=\frac{3\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+3\right)}$.

PART B

Answer any two questions. Each question carries 10 marks.

9. Determine Norton equivalent circuit for the network shown in figure (6) and hence find the current I_{L} through 5Ω resistor.

10. In the network shown in figure (7), determine the value of R_{L} for maximum power transfer. Also, find the maximum power transferred.

11. Draw the oriented graph, select a suitable tree and find the tie-set matrix for the circuit shown in figure (9). Hence find the currents I_{1}, I_{2} and I_{3} using mesh analysis.

PART C

Answer any two questions. Each question carries 10 marks.

12. In the circuit shown in figure (10), the switch is opened at $t=0$, steady state conditions having been established earlier to the switching operation. Find the current $i_{L}(t)$ for $t \geq 0$.

13. In the circuit shown in figure (11), draw the transformed circuit and determine the current $i_{2}(t)$ using mesh analysis. Assume the initial conditions as zeros.

14. In the circuit shown in figure (12), the switch is closed at $t=0$. Determine the voltage $v_{0}(t)$ for $t \geq 0$.

PART D

Answer any two questions. Each question carries 10 marks.

15. For the network shown in figure (13), find a) z-parameters and b) ABCD parameters.

Figure (13)

Figure (14)
16. For the network shown in figure (14), determine driving point admittance $\mathrm{Y}_{11}(\mathrm{~s})$ at port 1 and transfer admittance $Y_{12}(s)=\frac{I_{2}(s)}{V_{1}(s)}$.
17. Determine Foster I and II realizations of the driving point LC impedance function $Z(s)=\frac{4\left(s^{2}+1\right)\left(s^{2}+16\right)}{s\left(s^{2}+4\right)}$.

